SADLER MATHEMATICS METHODS UNIT 1

WORKED SOLUTIONS

Chapter 6 Quadratic equations

Exercise 6A

Question 1

(x+5)(x-3) = 0Either x+5=0 or x-3=0x=-5 x=3

Question 2

(x+8)(x+9) = 0Either x+8=0 or x+9=0x=-8 x=-9

Question 3

(2x-11)(x+5) = 0Either 2x-11 = 0 or x+5 = 0x = 5.5 x = -5

Question 4

 $x^2 = 25$ $x = \pm 5$

$$x^{2}-49 = 0$$
$$(x+7)(x-7) = 0$$
$$x = \pm 7$$

Question 6

 $2x^2 = 200$ $x^2 = 100$ $x = \pm 10$

Question 7

 $x^{2} + 9x + 20 = 0$ (x+5)(x+4) = 0 Either x+5=0 or x+4=0 x=-5 x=-4

Question 8

 $x^{2} + x - 20 = 0$ (x+5)(x-4) = 0Either x+5=0 or x-4=0x=-5 x=4

$$x^{2}-9x+20=0$$

(x-5)(x-4)=0
Either x-5=0 or x-4=0
x=5 x=4

$$x^{2} - x - 20 = 0$$

(x-5)(x+4) = 0
Either x-5=0 or x+4=0
x=5 x=-4

Question 11

$$x^{2}+2x-35=0$$

 $(x-5)(x+7)=0$
Either $x-5=0$ or $x+7=0$
 $x=5$ $x=-7$

Question 12

$$x^{2} + 4x + 3 = 0$$

 $(x+3)(x+1) = 0$
Either $x+3=0$ or $x+1=0$
 $x=-3$ $x=-1$

Question 13

 $x^{2} + 7x + 6 = 0$ (x+6)(x+1) = 0Either x+6=0 or x+1=0x=-6 x=-1

Question 14

 $x^{2} + 10x + 21 = 0$ (x+3)(x+7) = 0 Either x+3=0 or x+7=0 x = -3 x = -7

© Cengage Learning Australia Pty Ltd 2018

 $x^{2}+8x+15=0$ (x+3)(x+5)=0 Either x+3=0 or x+5=0 x=-3 x=-5

Question 16

 $x^{2}-4x-12 = 0$ (x-6)(x+2)=0 Either x-6=0 or x+2=0 x=6 x=-2

Question 17

$$x^{2}-4x-5=0$$

 $(x-5)(x+1)=0$
Either $x-5=0$ or $x+1=0$
 $x=5$ $x=-1$

Question 18

 $x^{2}-4x = 0$ x(x-4) = 0Either x = 0 or x-4=0x = 4

Question 19

 $x^{2}+5x-14=0$ (x-2)(x+7)=0 Either x-2=0 or x+7=0 x=2 x=-7

© Cengage Learning Australia Pty Ltd 2018

$$x^{2}-36=0$$
$$(x+6)(x-6)=0$$
$$x=\pm 6$$

Question 21

$$x^{2}+6x+9=0$$
$$(x+3)^{2}=0$$
$$x+3=0$$
$$x=-3$$

Question 22

$$x^{2}-3x-4=0$$

(x-4)(x+1)=0
Either x-4=0 or x+1=0
x=4 x=-1

$$x^{2}-8x+16 = 0$$
$$(x-4)^{2} = 0$$
$$x-4 = 0$$
$$x = 4$$

$$x^{2} = 15 - 2x$$

$$x^{2} + 2x - 15 = 0$$

$$(x - 3)(x + 5) = 0$$

Either $x - 3 = 0$ or $x + 5 = 0$
 $x = 3$ $x = -5$

Question 25

$$x^{2} = 3x$$

$$x^{2} - 3x = 0$$

$$x(x-3) = 0$$
Either $x = 0$ or $x-3=0$

$$x = 3$$

Question 26

$$x^{2} + 12 = 7x$$

$$x^{2} - 7x + 12 = 0$$

$$(x - 3)(x - 4) = 0$$

Either $x - 3 = 0$ or $x - 4 = 0$
 $x = 3$ $x = 4$

$$x^{2} = 24 - 10x$$

$$x^{2} + 10x - 24 = 0$$

$$(x - 2)(x + 12) = 0$$
Either $x - 2 = 0$ or $x + 12 = 0$

$$x = 2$$

$$x = -12$$

$$4x^{2}-9=0$$

(2x+3)(2x-3)=0
Either 2x+3=0 or 2x-3=0
 $x=\pm 1.5$

Question 29

$$25x^{2} - 1 = 0$$

(5x-1)(5x+1) = 0
Either 5x-1=0 or 5x+1=0
 $x = \pm 0.2$

Question 30

$$x^{2} = 2x + 15$$

$$x^{2} - 2x - 15 = 0$$

$$(x - 5)(x + 3) = 0$$

Either $x - 5 = 0$ or $x + 3 = 0$
 $x = 5$ $x = -3$

$$x^{2}+9=6x$$
$$x^{2}-6x+9=0$$
$$(x-3)^{2}=0$$
$$x-3=0$$
$$x=3$$

$$x^{2} = 5(2x-5)$$
$$x^{2}-10x+25 = 0$$
$$(x-5)^{2} = 0$$
$$x-5 = 0$$
$$x = 5$$

Question 33

$$2x^{2} + 5x - 12 = 0$$

(2x-3)(x+4) = 0
Either 2x-3=0 or x+4=0
x=1.5 x=-4

Question 34

$$3x^{2} + 10x - 8 = 0$$

(3x-2)(x+4) = 0
Either 3x-2=0 or x+4=0
$$x = \frac{2}{3} \qquad x = -4$$

Question 35

 $2x^{2}-3x-5=0$ (2x-5)(x+1)=0 Either 2x-5=0 or x+1=0 x=2.5 x=-1

$$5x^{2} - 34x - 7 = 0$$

(5x+1)(x-7) = 0
Either 5x+1=0 or x-7=0
x = -0.2 x = 7

Question 37

$$2x^{2} + x - 21 = 0$$

(2x+7)(x-3) = 0
Either 2x+7 = 0 or x-3 = 0
x = -3.5 x = 3

Question 38

$$6x^{2} - 19x + 10 = 0$$

(3x-2)(2x-5) = 0
Either 3x-2=0 or 2x-5=0
 $x = \frac{2}{3}$ x = 2.5

$$10x^{2}-9x+2=0$$

(2x-1)(5x-2)=0
Either 2x-1=0 or 5x-2=0
 $x=0.5$ $x=0.4$

$$x^{2} + 7x = 30$$

$$x^{2} + 7x - 30 = 0$$

$$(x+10)(x-3) = 0$$

Either $x+10 = 0$ or $x-3 = 0$
 $x = -10$ $x = 3$

The number is either -10 or 3.

Question 41

$$x^{2}+10x+25=0$$
$$(x+5)^{2}=0$$
$$x+5=0$$
$$x=-5$$

The number is –5.

Question 42

When the object hits the ground, h = 0. $h = 40t - 5t^2 = 0$ 5t(8-t) = 0Either 5t = 0 or 8-t = 0t = 0 t = 8

$$s = ut + \frac{1}{2}at^{2}$$

$$10 = 3t + \frac{1}{2}(2)t^{2}$$

$$t^{2} + 3t - 10 = 0$$

$$(t - 2)(t + 5) = 0$$

Either $t - 2 = 0$ or $t + 5 = 0$

$$t = 2$$

$$t = -5$$

Given $t \ge 0, t = 2$

$$w = kp^{2} - 2cp$$

$$33 = 1p^{2} - 2(4)p$$

$$p^{2} - 8p - 33 = 0$$

$$(p - 11)(p + 3) = 0$$

Either $p - 11 = 0$ or $p + 3 = 0$

$$p = 11 \qquad p = -3$$

Exercise 6B

Question 1

x = -0.77, 0.43

Question 2

x = -2.30, 1.30

Question 3

No real solutions

Question 4

x = -2.82, -0.18

Question 5

x = -1.74, 0.34

Question 6

x = -1.47, 0.27

Question 7

t = 13.8

Question 8

p = 0.22, 2.78

© Cengage Learning Australia Pty Ltd 2018

Graph does not touch *x*-axis therefore no real solutions exist.

Question 10

Graph cuts *x*-axis twice therefore two real solutions exist.

Question 11

Graph does not touch *x*-axis therefore no real solutions exist.

Question 12

Graph is tangent to *x*-axis therefore one real solution exists.

Question 13

Graph is tangent to *x*-axis therefore one real solution exists.

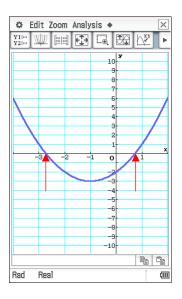
Question 14

Graph cuts *x*-axis twice therefore two real solutions exist.

Question 15

Curve and line intersect twice, so two real solutions exist.

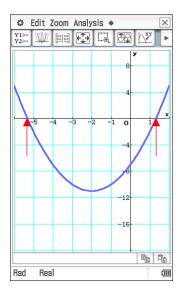
Question 16


Curve and line do not intersect at all therefore no real solutions exist.

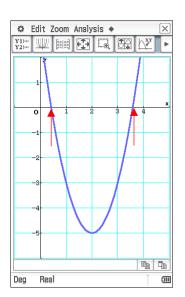
Line is tangent to the curve therefore one real solution exists.

Question 18

By inspection, $x \approx -2.7, 0.7$

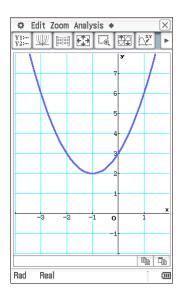

(Accuracy will depend on sketch)

Question 19

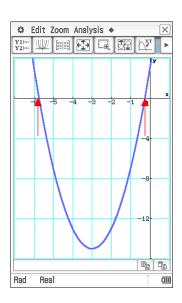

By inspection, $x \approx -5.3, 1.3$

(Accuracy will depend on sketch)

By inspection, $x \approx 0.4, 3.6$

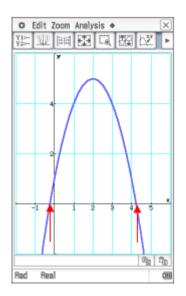

(Accuracy will depend on sketch)

Question 21


By inspection, there are no solutions as the graph

does not cross the *x*-axis.

By inspection, $x \approx -5.7, -0.3$


(Accuracy will depend on sketch)

Question 23

By inspection, $x \approx -0.2, 4.2$

(Accuracy will depend on sketch)

$$(x-6)^{2} - 36 + 21 = 0$$
$$(x-6)^{2} - 15 = 0$$
$$(x-6)^{2} = 15$$
$$x - 6 = \pm\sqrt{15}$$
$$x = \pm\sqrt{15} + 6$$
$$= 2.13, \ 9.87$$

Question 25

$$(x-3)^2 - 9 + 10 = 0$$

 $(x-6)^2 + 1 = 0$
 $(x-6)^2 = -1$

No real solutions exist

$$(x-4)^{2} - 16 + 1 = 0$$

$$(x-4)^{2} - 15 = 0$$

$$(x-4)^{2} = 15$$

$$x - 4 = \pm\sqrt{15}$$

$$x = \pm\sqrt{15} + 4$$

$$= 0.13, 7.87$$

$$(x+3.5)^{2} - 12.25 - 5 = 0$$

$$(x+3.5)^{2} - 17.25 = 0$$

$$(x+3.5)^{2} = 17.25$$

$$x+3.5 = \pm\sqrt{17.25}$$

$$x = \pm\sqrt{17.25} - 3.5$$

$$= -7.65, \ 0.65$$

Question 28

$$(x+1.5)^{2} - 2.25 - 5 = 0$$

$$(x+1.5)^{2} - 7.25 = 0$$

$$(x+1.5)^{2} = 7.25$$

$$x+1.5 = \pm\sqrt{7.25}$$

$$x = \pm\sqrt{7.25} - 1.5$$

$$= -4.19, \ 1.19$$

$$2(x^{2} + \frac{1}{2}x - 1.5) = 0$$

$$2[(x + \frac{1}{4})^{2} - \frac{1}{16} - \frac{3}{2}] = 0$$

$$2[(x + \frac{1}{4})^{2} - \frac{25}{16}] = 0$$

$$(x + \frac{1}{4})^{2} = \frac{25}{16}$$

$$x + \frac{1}{4} = \pm \frac{5}{4}$$

$$x = -\frac{1}{4} \pm \frac{5}{4}$$

$$= -1.5,1$$

$$(x-1)^{2} - 1 - 5 = 0$$
$$(x-1)^{2} - 6 = 0$$
$$(x-1)^{2} = 6$$
$$x - 1 = \pm \sqrt{6}$$
$$x = 1 \pm \sqrt{6}$$

Question 31

$$(x-3)^{2}-9+1=0$$

$$(x-2)^{2}-8=0$$

$$(x-3)^{2}=8$$

$$x-3=\pm\sqrt{8}$$

$$x=3\pm2\sqrt{2}$$

$$(x+5)^{2}-25-7 = 0$$

$$(x+5)^{2}-32 = 0$$

$$(x+5)^{2} = 32$$

$$x+5 = \pm\sqrt{32}$$

$$x = -5 \pm 4\sqrt{2}$$

$$2(x^{2} + 5x - 2.5) = 0$$

$$2[(x + 2.5)^{2} - 6.25 - 2.5] = 0$$

$$2[(x + 2.5)^{2} - 8.75] = 0$$

$$(x + 2.5)^{2} - \frac{35}{4} = 0$$

$$x + 2.5 = \pm \sqrt{\frac{35}{4}}$$

$$x = -\frac{5}{2} \pm \frac{\sqrt{35}}{2}$$

$$3\left(x^{2} + \frac{5}{3}x + \frac{1}{3}\right) = 0$$

$$3\left[\left(x + \frac{5}{6}\right)^{2} - \frac{25}{36} + \frac{1}{3}\right] = 0$$

$$3\left[\left(x + \frac{5}{6}\right)^{2} - \frac{13}{36}\right] = 0$$

$$\left(x + \frac{5}{6}\right)^{2} - \frac{13}{36} = 0$$

$$x + \frac{5}{6} = \pm\sqrt{\frac{13}{36}}$$

$$x = -\frac{5}{6} \pm \frac{\sqrt{13}}{6}$$

$$5\left(x^{2} + \frac{1}{5}x - \frac{1}{5}\right) = 0$$

$$3\left[\left(x + \frac{1}{10}\right)^{2} - \frac{1}{100} - \frac{1}{5}\right] = 0$$

$$3\left[\left(x + \frac{1}{10}\right)^{2} - \frac{21}{100}\right] = 0$$

$$\left(x + \frac{1}{10}\right)^{2} - \frac{21}{100} = 0$$

$$x + \frac{1}{10} = \pm\sqrt{\frac{21}{100}}$$

$$x = -\frac{1}{10} \pm \frac{\sqrt{21}}{10}$$

Question 36

$$a = 1, b = 1, c = -4$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-1 \pm \sqrt{1^2 - 4(1)(-4)}}{2}$$

$$= \frac{-1 \pm \sqrt{17}}{2}$$

$$= -2.56, 1.56$$

$$a = -2, \ b = 7, \ c = 5$$
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$= \frac{-7 \pm \sqrt{7^2 - 4(-2)(5)}}{2(-2)}$$
$$= \frac{-7 \pm \sqrt{89}}{-4}$$
$$= -0.61, 4.11$$

$$3x^{2} + 1 = 7x$$

$$3x^{2} - 7x + 1 = 0$$

$$a = 3, \ b = -7, \ c = 1$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{7 \pm \sqrt{(-7)^{2} - 4(3)(1)}}{2(3)}$$

$$= \frac{7 \pm \sqrt{37}}{6}$$

= 0.15, 2.18

$$6x = x^{2} + 7$$

$$x^{2} - 6x + 7 = 0$$

$$a = 1, \quad b = -6, \quad c = 7$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{6 \pm \sqrt{(-6)^{2} - 4(1)(7)}}{2(1)}$$

$$= \frac{6 \pm \sqrt{8}}{2}$$

$$= 1.59, \quad 4.41$$

$$x(x-1) = 7$$

$$x^{2} - x - 7 = 0$$

$$a = 1, \ b = -1, \ c = -7$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{1 \pm \sqrt{(-1)^{2} - 4(1)(-7)}}{2(1)}$$

$$= \frac{1 \pm \sqrt{29}}{2}$$

$$= -2.19, 3.19$$

$$2x(3x+1) = 5$$

$$6x^{2} + 2x - 5 = 0$$

$$a = 6, \ b = 2, \ c = -5$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-2 \pm \sqrt{(-2)^{2} - 4(6)(-5)}}{2(6)}$$

$$= \frac{-2 \pm \sqrt{124}}{12}$$

$$= -1.09, 0.76$$

$$a = 1, \ b = 3, \ c = 1$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-3 \pm \sqrt{(3)^2 - 4(1)(1)}}{2(1)}$$

$$= \frac{-3 \pm \sqrt{5}}{2}$$

$$= -\frac{3}{2} \pm \frac{\sqrt{5}}{2}$$

Question 43

$$a = 1, \ b = -7, \ c = 1$$
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$= \frac{7 \pm \sqrt{(-7)^2 - 4(1)(1)}}{2(1)}$$
$$= \frac{7 \pm \sqrt{45}}{2}$$
$$= \frac{7 \pm \sqrt{45}}{2}$$

$$a = 2, \ b = 1, \ c = -5$$
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$= \frac{-1 \pm \sqrt{(1)^2 - 4(2)(-5)}}{2(2)}$$
$$= \frac{-1 \pm \sqrt{41}}{4}$$
$$= -\frac{1}{4} \pm \frac{\sqrt{41}}{4}$$

$$3x^{2} = 1 + 5x$$

$$3x^{2} - 5x - 1 = 0$$

$$a = 3, \ b = -5, \ c = -1$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{5 \pm \sqrt{(-5)^{2} - 4(3)(-1)}}{2(6)}$$

$$= \frac{5 \pm \sqrt{37}}{6}$$

$$= \frac{5}{6} \pm \frac{\sqrt{37}}{6}$$

$$a = 5, \ b = 1, \ c = -5$$
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$= \frac{-1 \pm \sqrt{(1)^2 - 4(5)(-5)}}{2(5)}$$
$$= \frac{-1 \pm \sqrt{101}}{10}$$
$$= -\frac{1}{10} \pm \frac{\sqrt{101}}{10}$$

$$2x(x+2) = -1$$

$$2x^{2} + 4x + 1 = 0$$

$$a = 2, \quad b = 4, \quad c = 1$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-4 \pm \sqrt{(4)^{2} - 4(2)(1)}}{2(2)}$$

$$= \frac{-4 \pm \sqrt{8}}{4}$$

$$= -1 \pm \frac{\sqrt{2}}{2}$$

Question 48

$$a = 1, b = 5, c = -7$$

$$\Delta = b^{2} - 4ac$$

$$= 5^{2} - 4(1)(-7)$$

$$= 53$$

 $\Delta > 0$ therefore equation has two real roots

Question 49

$$a = 1, b = 5, c = 7$$

 $\Delta = b^{2} - 4ac$
 $= 5^{2} - 4(1)(7)$
 $= -3$

 $\Delta < 0$ therefore equation has no real roots

$$a = 1, b = -2, c = -3$$

$$\Delta = b^{2} - 4ac$$

$$= (-2)^{2} - 4(1)(-3)$$

$$= 16$$

 $\Delta > 0$ therefore equation has two real roots

Question 51

$$a = 2, b = 7, c = 5$$

$$\Delta = b^{2} - 4ac$$

$$= (7)^{2} - 4(2)(5)$$

$$= 9$$

 $\Delta > 0$ therefore equation has two real roots

Question 52

$$a = 4, b = -12, c = 9$$

$$\Delta = b^{2} - 4ac$$

$$= (-12)^{2} - 4(4)(9)$$

$$= 0$$

 $\Delta = 0$ therefore equation has one real root

Question 53

$$a = 3, b = -1, c = 1$$

$$\Delta = b^{2} - 4ac$$

$$= (-1)^{2} - 4(3)(1)$$

$$= -11$$

 $\Delta < 0$ therefore equation has no real roots

(x-3)(x+5) = 0 x-3=0 or x+5=0x=3 x=-5

Question 2

Line A has a *y*-intercept of (0, 60) and a negative gradient $\Rightarrow y = -x + 60$ Line B is a horizontal line $\Rightarrow y = 60$ Line C has a negative *y*-intercept and a positive gradient $\Rightarrow y = 2x - 60$ Line D is a vertical line $\Rightarrow x = 60$ Line E has a *y*-intercept of (0, 30) and a negative gradient $\Rightarrow y = -2x + 30$ Line F has a *y*-intercept of (0, 30) and a positive gradient $\Rightarrow y = 0.5x + 30$

Question 3

a Point D has co-ordinates (6, 5), Point E (14, 5) and Point F (14, 11).

AD = 6 units, DB = 6 units.

$$m_{AB} = \frac{6}{6} = 1$$

b DE = 8 units, EC = 4 units.

$$m_{DC} = \frac{4}{8} = \frac{1}{2}$$

c DE = 8 units, EF = 6 units.

$$m_{DF} = \frac{6}{8} = \frac{3}{4}$$

 $y = 3(x-1)^{2} + 2$ line of symmetry $x = 1 \therefore a = 1$ turning point $(1,2) \therefore b = 1, c = 2$ $d = 3(6-1)^{2} + 2 = 77$ $e = 3(-4-1)^{2} + 2 = 77$ $14 = 3(f-1)^{2} + 2 = 77$ $14 = 3(f-1)^{2} + 2$ $3(f-1)^{2} = 12$ $(f-1)^{2} = 4$ $f-1=\pm 2$ f=-1,3

Question 5

 $5w = l - 3 \implies l = 5w + 3$ $A = l \times w$ 36 = (5w + 3)w $5w^{2} + 3w - 36 = 0$ (5w - 12)(w + 3) = 0 5w = 12 or w + 3 = 0 $w = 2.4 \qquad w = -3$ Dis regard w = -3 as width cannot be negative $\therefore w = 2.4 \text{ cm}$ l = 5(2.4) + 3 = 15 cm

Area of triangle $\frac{1}{2} \times 5 \times 10 = 25 \text{ cm}^2$ $\tan \angle AOB = \frac{10}{5} = 2$ $\angle AOB = 1.107 \text{ radians}$ Area of sector AOB $\frac{1}{2}5^2(1.107)$ $= 13.84 \text{ cm}^2$ Area of triangle outside circle $25 - 13.84 \text{ cm}^2$ $= 11.2 \text{ cm}^2 \text{ (to 1 dp)}$

Question 7

Curve A minimum tp (0,-1) $\therefore y = ax^2 - 1$ x-int (1,0) $0 = a(1)^2 - 1$ 0 = a - 1 a = 1Equation of A : $y = x^2 - 1$ Curve B minimum tp (7,0) $\therefore y = a(x-7)^2$ B passes through (8,1) $1 = a(8-7)^2$ 1 = aEquation of B : $y = (x-7)^2$ Curve C minimum tp (-9,2) $\therefore y = a(x+9)^2 + 2$ C passes through (-8,3) $3 = a(-8+9)^2 + 2$ 1 = aEquation of C : $y = (x+9)^2 + 2$ Curve D minimum tp (-5,-8) $\therefore y = a(x+5)^2 - 8$ D passes through (-4,-7) $-7 = a(-4+5)^2 - 8$

1 = aEquation of D: $y = (x+5)^2 - 8$

Curve E maximum tp (4,1) $\therefore y = -a(x-4)^2 + 1$ E passes through (5,0) $0 = -a(5-4)^2 + 1$ -1 = -aa = 1Equation of E : $y = -(x-4)^2 + 1$

Curve F minimum tp (10,0) $\therefore y = a(x-10)^2$ F passes through (11,2) $2 = a(11-10)^2$ a = 2Equation of F: $y = 2(x-10)^2$ Curve G minimum tp (-5,-3) $\therefore y = a(x+5)^2 - 3$ G passes through (-4,1) $1 = a(-4+5)^2 - 3$ 4 = aEquation of G : $y = 4(x+5)^2 - 3$

Curve H maximum tp (-10,0) :: $y = -a(x+10)^2$ H passes through (-9,-2) $-2 = -a(-9+10)^2$ -2 = -aa = 2Equation of H : $y = -2(x+10)^2$

Question 8

$$SA = 2\pi r^{2} + 2\pi rh, \quad SA = 2000, h = 30$$

$$2000 = 2\pi r^{2} + 2\pi r(30)$$

$$2\pi r^{2} + 60\pi r - 2000 = 0$$

$$a = 2\pi, b = 60\pi, c = -2000$$

$$r = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-60\pi \pm \sqrt{(60\pi)^{2} - 4(2\pi)(-2000)}}{2(2\pi)}$$

$$= -38.31, 8.31$$

Disregard -38.31 as the radius cannot be negative $\therefore r = 8.3$ cm

$$(x+7)^{2} + (x+3)^{2} = (x+12)^{2}$$

$$x^{2} + 14x + 49 + x^{2} + 6x + 9 = x^{2} + 24x + 144$$

$$x^{2} - 4x - 86 = 0$$

$$(x-2)^{2} - 4 - 86 = 0$$

$$(x-2)^{2} = 90$$

$$x - 2 = \pm\sqrt{90}$$

$$x = 2 \pm 3\sqrt{10}$$

$$= -7.49, 11.49$$

A negative solution is not a sensible solution in this situation

 $\therefore x = 11.49$

$$ax^{2} + bx + c = 0$$

$$a(x^{2} + \frac{b}{a}x + \frac{c}{a}) = 0$$

$$a\left[\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}} + \frac{c}{a}\right] = 0$$

$$\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}} + \frac{c}{a} = 0$$

$$\left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2}}{4a^{2}} - \frac{c}{a}$$

$$\left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2} - 4ac}{4a^{2}}$$

$$x + \frac{b}{2a} = \pm \sqrt{\frac{b^{2} - 4ac}{4a^{2}}}$$

$$= \pm \frac{\sqrt{b^{2} - 4ac}}{2a}$$

$$x = -\frac{b}{2a} \pm \frac{\sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$